(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0') → 1'
f(s(x)) → g(x, s(x))
g(0', y) → y
g(s(x), y) → g(x, +'(y, s(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
g(s(x), y) → g(x, s(+'(y, x)))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
f(0') → 1'
f(s(x)) → g(x, s(x))
g(0', y) → y
g(s(x), y) → g(x, +'(y, s(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
g(s(x), y) → g(x, s(+'(y, x)))
Types:
f :: 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
g :: 0':1':s → 0':1':s → 0':1':s
+' :: 0':1':s → 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
g,
+'They will be analysed ascendingly in the following order:
+' < g
(6) Obligation:
Innermost TRS:
Rules:
f(
0') →
1'f(
s(
x)) →
g(
x,
s(
x))
g(
0',
y) →
yg(
s(
x),
y) →
g(
x,
+'(
y,
s(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
g(
s(
x),
y) →
g(
x,
s(
+'(
y,
x)))
Types:
f :: 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
g :: 0':1':s → 0':1':s → 0':1':s
+' :: 0':1':s → 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
Generator Equations:
gen_0':1':s2_0(0) ⇔ 0'
gen_0':1':s2_0(+(x, 1)) ⇔ s(gen_0':1':s2_0(x))
The following defined symbols remain to be analysed:
+', g
They will be analysed ascendingly in the following order:
+' < g
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':1':s2_0(
a),
gen_0':1':s2_0(
n4_0)) →
gen_0':1':s2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(0)) →RΩ(1)
gen_0':1':s2_0(a)
Induction Step:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0))) →IH
s(gen_0':1':s2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
f(
0') →
1'f(
s(
x)) →
g(
x,
s(
x))
g(
0',
y) →
yg(
s(
x),
y) →
g(
x,
+'(
y,
s(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
g(
s(
x),
y) →
g(
x,
s(
+'(
y,
x)))
Types:
f :: 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
g :: 0':1':s → 0':1':s → 0':1':s
+' :: 0':1':s → 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
Lemmas:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) → gen_0':1':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':1':s2_0(0) ⇔ 0'
gen_0':1':s2_0(+(x, 1)) ⇔ s(gen_0':1':s2_0(x))
The following defined symbols remain to be analysed:
g
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_0':1':s2_0(
n527_0),
gen_0':1':s2_0(
b)) →
*3_0, rt ∈ Ω(n527
0 + n527
02)
Induction Base:
g(gen_0':1':s2_0(0), gen_0':1':s2_0(b))
Induction Step:
g(gen_0':1':s2_0(+(n527_0, 1)), gen_0':1':s2_0(b)) →RΩ(1)
g(gen_0':1':s2_0(n527_0), +'(gen_0':1':s2_0(b), s(gen_0':1':s2_0(n527_0)))) →LΩ(2 + n5270)
g(gen_0':1':s2_0(n527_0), gen_0':1':s2_0(+(+(n527_0, 1), b))) →IH
*3_0
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
f(
0') →
1'f(
s(
x)) →
g(
x,
s(
x))
g(
0',
y) →
yg(
s(
x),
y) →
g(
x,
+'(
y,
s(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
g(
s(
x),
y) →
g(
x,
s(
+'(
y,
x)))
Types:
f :: 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
g :: 0':1':s → 0':1':s → 0':1':s
+' :: 0':1':s → 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
Lemmas:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) → gen_0':1':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
g(gen_0':1':s2_0(n527_0), gen_0':1':s2_0(b)) → *3_0, rt ∈ Ω(n5270 + n52702)
Generator Equations:
gen_0':1':s2_0(0) ⇔ 0'
gen_0':1':s2_0(+(x, 1)) ⇔ s(gen_0':1':s2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
g(gen_0':1':s2_0(n527_0), gen_0':1':s2_0(b)) → *3_0, rt ∈ Ω(n5270 + n52702)
(14) BOUNDS(n^2, INF)
(15) Obligation:
Innermost TRS:
Rules:
f(
0') →
1'f(
s(
x)) →
g(
x,
s(
x))
g(
0',
y) →
yg(
s(
x),
y) →
g(
x,
+'(
y,
s(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
g(
s(
x),
y) →
g(
x,
s(
+'(
y,
x)))
Types:
f :: 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
g :: 0':1':s → 0':1':s → 0':1':s
+' :: 0':1':s → 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
Lemmas:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) → gen_0':1':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
g(gen_0':1':s2_0(n527_0), gen_0':1':s2_0(b)) → *3_0, rt ∈ Ω(n5270 + n52702)
Generator Equations:
gen_0':1':s2_0(0) ⇔ 0'
gen_0':1':s2_0(+(x, 1)) ⇔ s(gen_0':1':s2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
g(gen_0':1':s2_0(n527_0), gen_0':1':s2_0(b)) → *3_0, rt ∈ Ω(n5270 + n52702)
(17) BOUNDS(n^2, INF)
(18) Obligation:
Innermost TRS:
Rules:
f(
0') →
1'f(
s(
x)) →
g(
x,
s(
x))
g(
0',
y) →
yg(
s(
x),
y) →
g(
x,
+'(
y,
s(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
g(
s(
x),
y) →
g(
x,
s(
+'(
y,
x)))
Types:
f :: 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
g :: 0':1':s → 0':1':s → 0':1':s
+' :: 0':1':s → 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
Lemmas:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) → gen_0':1':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':1':s2_0(0) ⇔ 0'
gen_0':1':s2_0(+(x, 1)) ⇔ s(gen_0':1':s2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) → gen_0':1':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(20) BOUNDS(n^1, INF)